Loading...

Logical Electronic ==>

(adsbygoogle = window.adsbygoogle || []).push({});

Memory : Memory With Moving Parts

Memory : Read-Only Memory

Memory : Historical,Nonmechanical Memory Technologies

Memory : Modern Nonmechanical Memory

Memory : Digital Memory Terms And Concepts

Memory : Why Digital?

DIP Gate Packaging

Constructing The NOR Function

Constructing The OR Function

Constructing The NAND Function

Constructing The AND Function

Constructing The "Buffer" Function

Constructing The NOT Function

Tristate Buffer Gate

Special Output Gates

CMOS Bilateral Switch

Buffered And Unbuffered Gates

CMOS OR Gate

CMOS NOR Gate

CMOS AND Gate

CMOS NAND Gate

CMOS Gate Circuitry

Negative Binary Numbers

Binary Addition

Sequential Logic Devices

Boolean Algebra

Digital Computing

Up Down Counter Application

Synchronous Counters

Asynchronous Counters

Binary Count Sequence

Special Output Gates

TTL NOR And OR Gates

TTL NAND And AND Gates

The Negative-OR Gate

The Negative-AND Gate

The NOR Gate

Exclusive-NOR (XNOR) Gate

Switching Logic And Circuits

Hexadecimal Numbers System

Logic - Binary Functions

The Exclusive-OR ( XOR ) Gate

The NAND Gate

The NOT Gate

The OR Gate

The AND Gate

Digital Logic Electronic

47 topics total

Memory : Read-Only Memory

Memory : Historical,Nonmechanical Memory Technologies

Memory : Modern Nonmechanical Memory

Memory : Digital Memory Terms And Concepts

Memory : Why Digital?

DIP Gate Packaging

Constructing The NOR Function

Constructing The OR Function

Constructing The NAND Function

Constructing The AND Function

Constructing The "Buffer" Function

Constructing The NOT Function

Tristate Buffer Gate

Special Output Gates

CMOS Bilateral Switch

Buffered And Unbuffered Gates

CMOS OR Gate

CMOS NOR Gate

CMOS AND Gate

CMOS NAND Gate

CMOS Gate Circuitry

Negative Binary Numbers

Binary Addition

Sequential Logic Devices

Boolean Algebra

Digital Computing

Up Down Counter Application

Synchronous Counters

Asynchronous Counters

Binary Count Sequence

Special Output Gates

TTL NOR And OR Gates

TTL NAND And AND Gates

The Negative-OR Gate

The Negative-AND Gate

The NOR Gate

Exclusive-NOR (XNOR) Gate

Switching Logic And Circuits

Hexadecimal Numbers System

Logic - Binary Functions

The Exclusive-OR ( XOR ) Gate

The NAND Gate

The NOT Gate

The OR Gate

The AND Gate

Digital Logic Electronic

47 topics total

Digital logic gate circuits are manufactured as integrated circuits: all the constituent transistors and resistors built on a single piece of semiconductor material. The engineer, technician, or hobbyist using small numbers of gates will likely find what he or she needs enclosed in a DIP (Dual Inline Package) housing. DIP-enclosed integrated circuits are available with even numbers of pins, located at 0.100 inch intervals from each other for standard circuit board layout compatibility. Pin counts of 8, 14, 16, 18, and 24 are common for DIP "chips."

Part numbers given to these DIP packages specify what type of gates are enclosed, and how many.

These part numbers are industry standards, meaning that a "74LS02" manufactured by Motorola will be identical in function to a "74LS02" manufactured by Fairchild or by any other manufacturer.

Letter codes prepended to the part number are unique to the manufacturer, and are not industry standard codes. For instance, a SN74LS02 is a quad 2-input TTL NOR gate manufactured by Motorola, while a DM74LS02 is the exact same circuit manufactured by Fairchild.

Logic circuit part numbers beginning with "74" are commercial-grade TTL. If the part number begins with the number "54", the chip is a military-grade unit: having a greater operating temperature range, and typically more robust in regard to allowable power supply and signal voltage levels. The letters "LS" immediately following the 74/54 prefix indicate "Low-power Schottky"circuitry, using Schottky-barrier diodes and transistors throughout, to decrease power dissipation.

Non-Schottky gate circuits consume more power, but are able to operate at higher frequencies due

to their faster switching times.

A few of the more common TTL "DIP" circuit packages are shown here for reference:

Keywords : Dip, Package, DIP-gate, Schottky, Function, Electronic, Logic, Gate

27 Nov 2006 Mon

| 27.001 ViewsNo Comments