Loading...

Logical Electronic ==>

(adsbygoogle = window.adsbygoogle || []).push({});

Memory : Memory With Moving Parts

Memory : Read-Only Memory

Memory : Historical,Nonmechanical Memory Technologies

Memory : Modern Nonmechanical Memory

Memory : Digital Memory Terms And Concepts

Memory : Why Digital?

DIP Gate Packaging

Constructing The NOR Function

Constructing The OR Function

Constructing The NAND Function

Constructing The AND Function

Constructing The "Buffer" Function

Constructing The NOT Function

Tristate Buffer Gate

Special Output Gates

CMOS Bilateral Switch

Buffered And Unbuffered Gates

CMOS OR Gate

CMOS NOR Gate

CMOS AND Gate

CMOS NAND Gate

CMOS Gate Circuitry

Negative Binary Numbers

Binary Addition

Sequential Logic Devices

Boolean Algebra

Digital Computing

Up Down Counter Application

Synchronous Counters

Asynchronous Counters

Binary Count Sequence

Special Output Gates

TTL NOR And OR Gates

TTL NAND And AND Gates

The Negative-OR Gate

The Negative-AND Gate

The NOR Gate

Exclusive-NOR (XNOR) Gate

Switching Logic And Circuits

Hexadecimal Numbers System

Logic - Binary Functions

The Exclusive-OR ( XOR ) Gate

The NAND Gate

The NOT Gate

The OR Gate

The AND Gate

Digital Logic Electronic

47 topics total

Memory : Read-Only Memory

Memory : Historical,Nonmechanical Memory Technologies

Memory : Modern Nonmechanical Memory

Memory : Digital Memory Terms And Concepts

Memory : Why Digital?

DIP Gate Packaging

Constructing The NOR Function

Constructing The OR Function

Constructing The NAND Function

Constructing The AND Function

Constructing The "Buffer" Function

Constructing The NOT Function

Tristate Buffer Gate

Special Output Gates

CMOS Bilateral Switch

Buffered And Unbuffered Gates

CMOS OR Gate

CMOS NOR Gate

CMOS AND Gate

CMOS NAND Gate

CMOS Gate Circuitry

Negative Binary Numbers

Binary Addition

Sequential Logic Devices

Boolean Algebra

Digital Computing

Up Down Counter Application

Synchronous Counters

Asynchronous Counters

Binary Count Sequence

Special Output Gates

TTL NOR And OR Gates

TTL NAND And AND Gates

The Negative-OR Gate

The Negative-AND Gate

The NOR Gate

Exclusive-NOR (XNOR) Gate

Switching Logic And Circuits

Hexadecimal Numbers System

Logic - Binary Functions

The Exclusive-OR ( XOR ) Gate

The NAND Gate

The NOT Gate

The OR Gate

The AND Gate

Digital Logic Electronic

47 topics total

It is sometimes desirable to have a logic gate that provides both inverted and non-inverted outputs.

For example, a single-input gate that is both a buffer and an inverter, with a separate output terminal

for each function.

Or, a two-input gate that provides both the AND and the NAND functions in a single circuit. Such gates do exist and they are referred to as complementary output gates. The general symbology for such a gate is the basic gate figure with a bar and two output lines protruding from it. An array of complementary gate symbols is shown in the following illustration:

Complementary gates are especially useful in "crowded" circuits where there may not be enough

physical room to mount the additional integrated circuit chips necessary to provide both inverted

and noninverted outputs using standard gates and additional inverters.

They are also useful in applications where a complementary output is necessary from a gate, but the addition of an inverter would introduce an unwanted time lag in the inverted output relative to the noninverted output.

The internal circuitry of complemented gates is such that both inverted and noninverted outputs

change state at almost exactly the same time:

change state at almost exactly the same time:

Keywords : 4066, CMOS Bilateral, Switch, Gate, Cmos, Gates, CMOS-gates, Logic Gate, Complementary, AND, OR, XOR, Gates

26 Nov 2006 Mon

| 8.935 ViewsNo Comments