Loading...

Logical Electronic ==>

(adsbygoogle = window.adsbygoogle || []).push({});

Memory : Memory With Moving Parts

Memory : Read-Only Memory

Memory : Historical,Nonmechanical Memory Technologies

Memory : Modern Nonmechanical Memory

Memory : Digital Memory Terms And Concepts

Memory : Why Digital?

DIP Gate Packaging

Constructing The NOR Function

Constructing The OR Function

Constructing The NAND Function

Constructing The AND Function

Constructing The "Buffer" Function

Constructing The NOT Function

Tristate Buffer Gate

Special Output Gates

CMOS Bilateral Switch

Buffered And Unbuffered Gates

CMOS OR Gate

CMOS NOR Gate

CMOS AND Gate

CMOS NAND Gate

CMOS Gate Circuitry

Negative Binary Numbers

Binary Addition

Sequential Logic Devices

Boolean Algebra

Digital Computing

Up Down Counter Application

Synchronous Counters

Asynchronous Counters

Binary Count Sequence

Special Output Gates

TTL NOR And OR Gates

TTL NAND And AND Gates

The Negative-OR Gate

The Negative-AND Gate

The NOR Gate

Exclusive-NOR (XNOR) Gate

Switching Logic And Circuits

Hexadecimal Numbers System

Logic - Binary Functions

The Exclusive-OR ( XOR ) Gate

The NAND Gate

The NOT Gate

The OR Gate

The AND Gate

Digital Logic Electronic

47 topics total

Memory : Read-Only Memory

Memory : Historical,Nonmechanical Memory Technologies

Memory : Modern Nonmechanical Memory

Memory : Digital Memory Terms And Concepts

Memory : Why Digital?

DIP Gate Packaging

Constructing The NOR Function

Constructing The OR Function

Constructing The NAND Function

Constructing The AND Function

Constructing The "Buffer" Function

Constructing The NOT Function

Tristate Buffer Gate

Special Output Gates

CMOS Bilateral Switch

Buffered And Unbuffered Gates

CMOS OR Gate

CMOS NOR Gate

CMOS AND Gate

CMOS NAND Gate

CMOS Gate Circuitry

Negative Binary Numbers

Binary Addition

Sequential Logic Devices

Boolean Algebra

Digital Computing

Up Down Counter Application

Synchronous Counters

Asynchronous Counters

Binary Count Sequence

Special Output Gates

TTL NOR And OR Gates

TTL NAND And AND Gates

The Negative-OR Gate

The Negative-AND Gate

The NOR Gate

Exclusive-NOR (XNOR) Gate

Switching Logic And Circuits

Hexadecimal Numbers System

Logic - Binary Functions

The Exclusive-OR ( XOR ) Gate

The NAND Gate

The NOT Gate

The OR Gate

The AND Gate

Digital Logic Electronic

47 topics total

For example, a fire alarm must sound if a switch is pressed (A) OR if a smoke detector is activated (B).

A |
B |
Q |

0 |
0 |
0 |

0 |
1 |
1 |

1 |
0 |
1 |

1 |
1 |
1 |

This is basically saying that Q comes on when either A or B are on. Note that my drawing skills are not very good, especially when you couple them with a mouse. So the OR gate is meant to look like an arrowhead. The general shape is there, but you just need to straighten it up a little. Note that the circuit diagrams become a little complicated now. So from now on, if there is a dot at a crossing of 2 wires, then the wires are joined. If there is no dot, then the wires just cross, with no connection or electrical conductivity between them.

This circuit can be represented using the following circuit diagram:

Keywords : OR, Gate, Decimal, Binary, Hexodecimal, Logic Gates

17 Mar 2006 Fri

| 8.901 ViewsNo Comments