Designing An Opamp Headphone Amplifier

Power-supply errors occur when noise from the power supply mixes with the input signal. The PSR (power supply rejection) specification is a measure of how well an opamp is able to block power supply noise and values of 100dB or more are common. PSR will vary with frequency, but the spec usually refers only to DC behavior. Instead, search for a graph in the datasheets of the PSR over the audio frequency range. In addition to choosing opamps with high PSR over a wide audio range, power-supply errors can be reduced by using power supplies that are highly regulated and bypassed. Power dissipation crosstalk in a dual opamp. Figure 1d

Opamp-based headphone amplifiers can be prone to thermal errors due to output loading of the opamps. The power dissipation in an opamp when driving low impedance loads can raise the temperature of the device and cause changes in the input offset voltage, thus compromising the linearity. In dual and quad IC devices, the thermal conditions of one opamp can affect all others in the package because the opamp circuits share a common substrate ("power-dissipation-related crosstalk").

Thermal errors can be measured by comparing the output distortion of an opamp under load and no-load conditions. Figure 1d shows the thermal loading effect of one buffer on the other in a dual buffer IC (the system circuit is similar to figure 5d). Channel A is being fed a frequency sweep signal; channel B is idle. When buffer A is driving a 25 ohm load (as opposed to driving no load), it induces a stronger thermal-related error signal at the input of buffer B. When the dual (or quad) IC buffers are used in circuits with voltage gain front-end as seen in figure 5d, these thermal errors can be corrected via global feedback. Conversely, buffering an input-stage opamp can reduce thermal errors in the input stage by isolating the power dissipation to the output stages. (For more information about buffering, see the section on output stages below.) In general, using single opamps instead of duals or quads will prevent power-dissipation crosstalk distortion. Precision low-noise opamps appear to have the lowest thermal errors.

Keywords : Opamp, Operational Amplifier, Headphone, P-amp, Configuring, Opamps, For, Voltage, Gain
Writer : delon  |
27 Feb 2011 Mon   
No Comments
Write Comment
Your Name
You are writing as anonymous comment, if you are a member please login.