Designing An Opamp Headphone Amplifier


AC Power Supplies


Slow-on regulator.

Figure 19

To regulate or not to regulate, the answer depends on the circuit. Modern opamps have excellent power supply rejection ratios (PSRR) and are less affected by voltage fluctuations than older products, but discrete output stages may be more vulnerable. Since headphone amplifiers draw so little power and 3-pin regulators are cheap, it cannot hurt to have a regulated supply. Figure 19 shows a dual supply with the LM150/LM133 floating regulators configured for slow-start to minimize turn-on thumps. The delay is R*C = 8900 * 1000 E-6 = 9 seconds. Also check for power supply schematics in HeadWize Projects articles or in the datasheets for regulators. In any case, each opamp should be decoupled from the power supply with a 0.1uF ceramic capacitor and possibly a 10uF electrolytic, connected from the power supply pins to ground (see figure 14e below).

High voltage regulator.

Figure 20

Tube circuits often do not use regulated supplies, but where recommended, it is usually a single high voltage regulated supply for a gain stage and/or a low voltage regulated supply for tube heaters. For example, the Forssell tube opamp requires a regulated +350V supply for the output stage (at least 30mA for two opamps) and a 6V regulated supply for the heaters to minimize hum. Floating regulators, such as the LM150, can output hundreds of volts, so long as the input/output differential voltage remains within spec (and don´t forget to diode protect the regulator). Figure 20 shows a simple zener-based high voltage regulator. If the output voltage goes up, the potential across VGS decreases and the MOSFET reduces output current. If the output voltage goes down, then VGS increases, and output current increases. The IRF420 specified has a VDS of 450V and an ID of 2A continuous and must be mounted on a heatsink. The zener can be any series of 5W zeners (for the Forssell circuit) that total about 350V.

Battery Supplies

Battery-based dual power supplies.

Figure 21

There are opamps that will operate on a single 1.5V cell. Such micro-power opamps can drive very efficient, low-impedance headphones. With other headphones, the inability of micro-power opamps to develop higher voltages across the load will limit the volume. One method of getting higher voltages from batteries is to stack the batteries in series. Another is to raise the battery voltage with a DC-to-DC converter (to several volts or even several hundred volts in the case of portable electrostatic headphones). DC-to-DC converters, also called switching regulators, do their magic by changing the DC voltage to an AC voltage via an oscillator, which feeds a step-up transformer or capacitive/inductive reservoir to build the voltage, and then is converted back to DC at the higher voltage. As with any AC-based supply, a DC-to-DC supply must have a good filter network at the output to minimize power supply noise.

Opamps can run off single supplies, but are designed for dual supplies. Headphone amps with direct-coupled outputs must be powered from dual supplies. If there is room in the amplifier enclosure, separate batteries for the positive and negative supplies is the suggested implementation (figures 21b). If the opamp can run on a supply of ±3V or less, a single 9V battery can be converted into a dual supply as shown in figure 21a. A voltage divider creates a virtual ground at the center junction and draws less than 1 ma. at idle. The electrolytic ouput capacitors both reduce the supply impedance at high frequencies and function as a power reservoir to simulate two separate battery sources.

This version of a virtually grounded supply works best with amplifiers that draw lower idling current, as the capacitors must be able to "recharge" quickly. Start with 100uF capacitors. With an oscilloscope or a multimeter, monitor the supply for any ringing or fluctuation with the amplifier driving headphones loudly. Increase the capacitance or decrease the resistor values of the voltage divider to compensate (decreasing the voltage divider resistance values will increase idle current). The most important test of all is the listening test. Despite supply fluctations, the amplifier may function without audible detriment. For a simple AC power supply, apply this circuit to an adapter with 12V regulated output (Radio Shack sells one) to get regulated ±6V (figure 21c). Regardless of the supply option used, decoupling the opamps from the supply (figure 21d) will improve stability.

Battery-based dual supply with a voltage reference.

Figure 22

There may be times, though, when a virtually-grounded dual supply has a tendency to "rail" when the resistor-type voltage divider cannot maintain the virtual ground at 1/2 Vcc. Such cases may occur when the opamp draws too much current or input signal (for example, a high boost equalizer) pushes the opamp into heavy clipping and power supply is unable to recover. There are several inexpensive commercial voltage references that can output a stable 1/2 Vcc regardless of the load. Figure 22 shows a virtually-grounded dual supply implemented with the Texas Instruments TLE2426 voltage reference and one 9V battery (the TLE2426 is excellent also with two 9V batteries for a stable, dual 9V supply). Before selecting a voltage reference, check the specifications to see if it has adequate current capability for the load.

Keywords : Opamp, Operational Amplifier, Headphone, P-amp, Configuring, Opamps, For, Voltage, Gain
Writer : delon  |
27 Feb 2011 Mon   
No Comments
Write Comment
Your Name
You are writing as anonymous comment, if you are a member please login.